ÌâÄ¿ÄÚÈÝ
9£®¡°ÒÑÖª¹ØÓÚxµÄ²»µÈʽax2+bx+c£¾0µÄ½â¼¯Îª£¨1£¬2£©£¬½â¹ØÓÚxµÄ²»µÈʽcx2+bx+a£¾0£®¡±¸ø³öÈçϵÄÒ»Öֽⷨ£º½â£ºÓÉax2+bx+c£¾0µÄ½â¼¯Îª£¨1£¬2£©£¬µÃ£¬a£¨$\frac{1}{x}$£©2+b£¨$\frac{1}{x}$£©+c£¾0µÄ½â¼¯Îª£¨$\frac{1}{2}$£¬1£©£¬
¼´¹ØÓÚxµÄ²»µÈʽcx2+bx+a£¾0µÄ½â¼¯Îª£¨$\frac{1}{2}$£¬1£©£®
²Î¿¼ÉÏÊö½â·¨£ºÈô¹ØÓÚxµÄ²»µÈʽ$\frac{b}{x+a}$+$\frac{x+b}{x+c}$£¼0µÄ½â¼¯Îª£¨-1£¬-$\frac{1}{3}$£©¡È£¨$\frac{1}{2}$£¬1£©£¬Ôò¹ØÓÚxµÄ²»µÈʽ$\frac{b}{x-a}$-$\frac{x-b}{x-c}$£¾0µÄ½â¼¯Îª£¨¡¡¡¡£©
A£® | £¨-1£¬1£© | B£® | £¨-1£¬-$\frac{1}{2}$£©¡È£¨$\frac{1}{3}$£¬1£© | C£® | £¨-¡Þ£¬-$\frac{1}{2}$£©¡È£¨$\frac{1}{3}$£¬1£© | D£® | £¨-¡Þ£¬-$\frac{1}{2}$£©¡È£¨$\frac{1}{3}$£¬+¡Þ£© |
·ÖÎö ·ÂÕÕÌâÄ¿ÖеĽⷨ£¬Ð´³ö¶ÔÓ¦²»µÈʽµÄ½â´ð¹ý³Ì¼´¿É£®
½â´ð ½â£º¸ù¾ÝÌâÒ⣬
ÓÉ$\frac{b}{x+a}$+$\frac{x+b}{x+c}$£¼0µÄ½â¼¯Îª£¨-1£¬-$\frac{1}{3}$£©¡È£¨$\frac{1}{2}$£¬1£©£¬
µÃ$\frac{b}{-x+a}$+$\frac{-x+b}{-x+c}$£¼0µÄ½â¼¯Îª£¨-1£¬-$\frac{1}{2}$£©¡È£¨$\frac{1}{3}$£¬1£©£¬
¼´$\frac{b}{x-a}$-$\frac{x-b}{x-c}$£¾0µÄ½â¼¯Îª£¨-1£¬-$\frac{1}{2}$£©¡È£¨$\frac{1}{3}$£¬1£©£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁ˲»µÈʽµÄ½â·¨ÓëÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˹æÂÉÓë̽¾¿µÄÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÏÂÁк¯ÊýÖУ¬ÔÚÆ䶨ÒåÓòÄÚ¼ÈÊÇÆ溯ÊýÓÖÊÇÔöº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£® | y=tanx | B£® | y=2x | C£® | y=x | D£® | y=lg£¨1+x2£© |
17£®ÕýÏÒÇúÏßy=sinxÔڵ㣨$\frac{¦Ð}{3}$£¬$\frac{\sqrt{3}}{2}$£©µÄÇÐÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£® | x+2y-$\sqrt{3}$+$\frac{¦Ð}{3}$=0 | B£® | x-2y+$\sqrt{3}$-$\frac{¦Ð}{3}$=0 | C£® | $\sqrt{3}$x-2y+$\sqrt{3}$-$\frac{\sqrt{3}}{3}$¦Ð=0 | D£® | $\sqrt{3}$x+2y-$\sqrt{3}$+$\frac{\sqrt{3}}{3}$¦Ð=0 |
4£®Ä³¸ßУÔÚ2009ÄêµÄ×ÔÖ÷ÕÐÉú¿¼ÊԳɼ¨ÖÐËæ»ú³éÈ¡100ÃûѧÉúµÄ±ÊÊԳɼ¨£¬°´³É¼¨·Ö×飬µÃµ½µÄƵÂÊ·Ö²¼±íÈçͼËùʾ£®
£¨1£©ÇëÏÈÇó³öƵÂÊ·Ö²¼±íÖТ١¢¢ÚλÖÃÏàÓ¦Êý¾Ý£¬ÔÙÔÚ´ðÌâÖ½ÉÏÍê³ÉÏÂÁÐƵÂÊ·Ö²¼Ö±·½Í¼£»
£¨2£©ÎªÁËÄÜÑ¡°Î³ö×îÓÅÐãµÄѧÉú£¬¸ßУ¾ö¶¨ÔÚ±ÊÊԳɼ¨¸ßµÄµÚ3¡¢4¡¢5×éÖÐÓ÷ֲã³éÑù³éÈ¡6ÃûѧÉú½øÈëµÚ¶þÂÖÃæÊÔ£¬ÇóµÚ3¡¢4¡¢5×éÿ×é¸÷³éÈ¡¶àÉÙÃûѧÉú½øÈëµÚ¶þÂÖÃæÊÔ£¿
£¨3£©ÔÚ£¨2£©µÄÇ°ÌáÏ£¬Ñ§Ð£¾ö¶¨ÔÚ6ÃûѧÉúÖÐËæ»ú³éÈ¡2ÃûѧÉú½ÓÊÜA¿¼¹Ù½øÐÐÃæÊÔ£¬Ç󣺵Ú4×éÖÁÉÙÓÐÒ»ÃûѧÉú±»¿¼¹ÙAÃæÊԵĸÅÂÊ£¿
£¨1£©ÇëÏÈÇó³öƵÂÊ·Ö²¼±íÖТ١¢¢ÚλÖÃÏàÓ¦Êý¾Ý£¬ÔÙÔÚ´ðÌâÖ½ÉÏÍê³ÉÏÂÁÐƵÂÊ·Ö²¼Ö±·½Í¼£»
£¨2£©ÎªÁËÄÜÑ¡°Î³ö×îÓÅÐãµÄѧÉú£¬¸ßУ¾ö¶¨ÔÚ±ÊÊԳɼ¨¸ßµÄµÚ3¡¢4¡¢5×éÖÐÓ÷ֲã³éÑù³éÈ¡6ÃûѧÉú½øÈëµÚ¶þÂÖÃæÊÔ£¬ÇóµÚ3¡¢4¡¢5×éÿ×é¸÷³éÈ¡¶àÉÙÃûѧÉú½øÈëµÚ¶þÂÖÃæÊÔ£¿
£¨3£©ÔÚ£¨2£©µÄÇ°ÌáÏ£¬Ñ§Ð£¾ö¶¨ÔÚ6ÃûѧÉúÖÐËæ»ú³éÈ¡2ÃûѧÉú½ÓÊÜA¿¼¹Ù½øÐÐÃæÊÔ£¬Ç󣺵Ú4×éÖÁÉÙÓÐÒ»ÃûѧÉú±»¿¼¹ÙAÃæÊԵĸÅÂÊ£¿
×éºÅ | ·Ö×é | ƵÊý | ƵÂÊ |
µÚ1×é | [160£¬165£© | 5 | 0.050 |
µÚ2×é | [165£¬170£© | ¢Ù | 0.350 |
µÚ3×é | [170£¬175£© | 30 | ¢Ú |
µÚ4×é | [175£¬180£© | 20 | 0.200 |
µÚ5×é | [180£¬185£© | 10 | 0.100 |
ºÏ¼Æ | 100 | 1.00 |
1£®Éè±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y¡Ü1}\\{x+y¡Ý1}\\{y-2¡Ü0}\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=3x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£® | -1 | B£® | 3 | C£® | 11 | D£® | 12 |
18£®5λÄÐÉúÓë5λŮÉúÅųÉÒ»ÅÅ£¬ÄÐÉú¼×ÓëÄÐÉúÒÒÖ®¼äÓÐÇÒÖ»ÓÐ2λŮÉú£¬Å®Éú²»ÅÅÔÚÁ½¶Ë£¬ÕâÑùµÄÅÅÁÐÖÖÊýΪ£¨¡¡¡¡£©
A£® | 5760 | B£® | 57600 | C£® | 2880 | D£® | 28800 |