题目内容
【题目】设数列{an}的前n项和为Sn , 且a1=2,an+1=2Sn+2.
(1)求数列{an}的通项公式;
(2)若数列{bn}的各项均为正数,且bn是 与 的等比中项,求bn的前n项和Tn .
【答案】
(1)解:由an+1=2Sn+2,得
an=2Sn﹣1+2(n≥2),
两式作差得:an+1﹣an=2(Sn﹣Sn﹣1)=2an,
即 .
又a2=2S1+2=2a1+2=6,
∴ .
∴数列{an}是以2为首项,以3为公比的等比数列.
则 ;
(2)解:∵数列{bn}的各项均为正数,且bn是 与 的等比中项,
∴ ,
.
∴ .
.
作差得:
= = .
∴ .
【解析】(1)由an+1=2Sn+2,得an=2Sn﹣1+2(n≥2),作差后可得=3(n≥2),再检验,进而可得数列{an}是等比数列,由此可得数列{an}的通项公式;(2)由bn是 与 的等比中项可得{bn}的通项公式,再利用错位相减法可得{bn}的的前n项和Tn.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系.
【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) | 频数(人数) | 频率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合计 | 50 | 1 |
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同.
①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.