题目内容
【题目】如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记为OP所经过的在正方形ABCD内的区域(阴影部分)的面积,那么对于函数有以下三个结论:
①;
②任意,都有;
③任意且,都有.
其中正确结论的序号是__________. (把所有正确结论的序号都填上).
【答案】①②
【解析】试题分析:①:如图,当时, 与相交于点,∵,则,
∴,∴①正确;②:由于对称性, 恰好是正方形的面积,
∴,∴②正确;③:显然是增函数,∴,∴③错误.
考点:函数性质的运用.
【题型】填空题
【结束】
17
【题目】化简
(1)
(2)
【答案】(1) ;(2) .
【解析】试题分析:(1)切化弦可得三角函数式的值为-1
(2)结合三角函数的性质可得三角函数式的值为
试题解析:
(1)tan70°cos10°( tan20°﹣1)
=cot20°cos10°( ﹣1)
=cot20°cos10°( )
=×cos10°×()
=×cos10°×()
=×(﹣)
=﹣1
(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°
=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.
同理可得(1+tan2°)(1+tan43°)
=(1+tan3°)(1+tan42°)
=(1+tan4°)(1+tan41°)=…=2,
故=
练习册系列答案
相关题目