题目内容
【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e﹣2<a<1.
【答案】
(1)解:由f(x)=ex﹣ax2﹣bx﹣1,得g(x)=f′(x)=ex﹣2ax﹣b,所以g′(x)=ex﹣2a.
当x∈[0,1]时,g′(x)∈[1﹣2a,e﹣2a].
当a≤ 时,g′(x)≥0,所以g(x)在[0,1]上单调递增,
因此g(x)在[0,1]上的最小值是g(0)=1﹣b;
当a≥ 时,g′(x)≤0,所以g(x)在[0,1]上单调递减,
因此g(x)在[0,1]上的最小值是g(1)=e﹣2a﹣b;
当 <a< 时,令g′(x)=0,得x=ln(2a)∈(0,1),
所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,
于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a﹣2aln(2a)﹣b.
综上所述,当a≤ 时,g(x)在[0,1]上的最小值是g(0)=1﹣b;
当 <a< 时,g(x)在[0,1]上的最小值是g(ln(2a))=2a﹣2aln(2a)﹣b;
当a≥ 时,g(x)在[0,1]上的最小值是g(1)=e﹣2a﹣b
(2)证明:设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,
f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.
则g(x)不可能恒为正,也不可能恒为负.
故g(x)在区间(0,x0)内存在零点x1.
同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点,
由(1)知,当a≤ 时,g(x)在[0,1]递增,故g(x)在(0,1)内至多有1个零点,
当a≥ 时,g(x)在[0,1]递减,故g(x)在(0,1)内至多有1个零点,都不合题意,
所以 <a< ,
此时,g(x)在区间[0,ln(2a)]递减,在区间(ln(2a),1)递增,
因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有:g(0)=1﹣b>0,g(1)=e﹣2a﹣b>0,
由f(1)=0,得a+b=e﹣1<2,有g(0)=a﹣e+2>0,g(1)=1﹣a>0,解得:e﹣2<a<1,
所以函数f(x)在区间(0,1)内有零点时,e﹣2<a<1.
【解析】(1)先求出函数f(x)的导数,通过讨论a的范围得出函数的单调区间,从而求出函数的最值;(2)设x0为f(x)在区间(0,1)内的一个零点,通过讨论a的范围,得出a的取值.
【题目】环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数).现随机抽取20天的指数(见下表),将指数不低于8.5视为当天空气质量优良.
天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
空气质量指数 | 7.1 | 8.3 | 7.3 | 9.5 | 8.6 | 7.7 | 8.7 | 8.8 | 8.7 | 9.1 |
天数 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
空气质量指数 | 7.4 | 8.5 | 9.7 | 8.4 | 9.6 | 7.6 | 9.4 | 8.9 | 8.3 | 9.3 |
(Ⅰ)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(Ⅱ)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.