题目内容

已知|
a
|=1,
a
b
=
1
2
,(
a
-
b
)•(
a
+
b
)=
1
2
,求:
(1)
a
b
的夹角;
(2)
a
-
b
a
+
b
的夹角的余弦值.
(1)∵(
a
-
b
)•(
a
+
b
)=
1
2
,∴
a
2
-
b
2
=
1
2

又∵|
a
|=1,∴12-|
b
|2=
1
2
,解得|
b
|=
2
2

a
b
=
1
2

cos<
a
b
=
a
b
|
a
||
b
|
=
1
2
2
2
=
2
2

a
b
的夹角为
π
4

(2)由(1)可得|
a
-
b
|=
a
2
+
b
2
-2
a
b
=
12+(
2
2
)2-2×
1
2
=
2
2

|
a
+
b
|
=
a
2
+
b
2
+2
a
b
=
12+(
2
2
)2+2×
1
2
=
10
2

cos<
a
-
b
a
+
b
=
(
a
-
b
)•(
a
+
b
)
|
a
-
b
||
a
+
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网