题目内容

1.已知矩阵M=$(\begin{array}{l}{a}&{1}\\{b}&{1}\end{array})$的一个特征值l所对应的特征向量为$(\begin{array}{l}{1}\\{0}\end{array})$.
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+2xy+2y2=1在矩阵M对应变换作用下得到的新的曲线方程.

分析 (Ⅰ)通过$[\begin{array}{l}{a}&{1}\\{b}&{1}\end{array}]$$[\begin{array}{l}{1}\\{0}\end{array}]$=1•$[\begin{array}{l}{1}\\{0}\end{array}]$可得a=1,b-0,进而可得结论;
(Ⅱ)通过设曲线C上任意一点(x,y)在矩阵M对应变换作用下得到(x′,y′),利用$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{1}&{1}\\{0}&{1}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$,用x′、y′表示出x、y,并代入曲线C方程即得结论.

解答 解:(Ⅰ)依题意,$[\begin{array}{l}{a}&{1}\\{b}&{1}\end{array}]$$[\begin{array}{l}{1}\\{0}\end{array}]$=1•$[\begin{array}{l}{1}\\{0}\end{array}]$,
∴$[\begin{array}{l}{a}\\{b}\end{array}]$=$[\begin{array}{l}{1}\\{0}\end{array}]$,解得a=1,b-0,
∴M=$[\begin{array}{l}{1}&{1}\\{0}&{1}\end{array}]$,
∵detM=1≠0,所以M-1=$[\begin{array}{l}{1}&{-1}\\{0}&{1}\end{array}]$;
(Ⅱ)曲线C:x2+2xy+2y2=1上任意一点(x,y)
在矩阵M对应变换作用下得到(x′,y′),
则$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{1}&{1}\\{0}&{1}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$,∴$\left\{\begin{array}{l}{x′=x+y}\\{y′=y}\end{array}\right.$,即$\left\{\begin{array}{l}{x=x′-y′}\\{y=y′}\end{array}\right.$,
代入方程x2+2xy+2y2=1,得(x′)2+(y′)2=1,
∴曲线C在矩阵M对应变换作用下得到的新的曲线方程为:x2+y2=1.

点评 本题考查矩阵与变换,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网