题目内容
(2014·成都模拟)已知函数f(x)=x2+
+alnx(x>0).
(1)若f(x)在[1,+∞)上单调递增,求a的取值范围.
(2)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1,x2总有不等式
[f(x1)+f(x2)]≥f
成立,则称函数y=f(x)为区间D上的“凹函数”.试证当a≤0时,f(x)为“凹函数”.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810239296.png)
(1)若f(x)在[1,+∞)上单调递增,求a的取值范围.
(2)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1,x2总有不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810270289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810286543.png)
(1)a≥0 (2)见解析
(1)由f(x)=x2+
+alnx,
得f′(x)=2x-
+
.
因为函数为[1,+∞)上的单调增函数.
则f′(x)≥0在[1,+∞)上恒成立,
即不等式2x-
+
≥0在[1,+∞)上恒成立.
即a≥
-2x2在[1,+∞)上恒成立.
令φ(x)=
-2x2,上述问题等价于a≥φ(x)max,而φ(x)=
-2x2为[1,+∞)上的减函数,则φ(x)max=φ(1)=0,于是a≥0为所求.
(2)由f(x)=x2+
+alnx得
=
(
+
)+
+
(lnx1+lnx2)
=
(
+
)+
+aln
,
f
=
+
+aln
,
而
(
+
)≥
[(
+
)+2x1x2]=
, ①
又(x1+x2)2=(
+
)+2x1x2≥4x1x2,
所以
≥
. ②
因为
≤
,所以ln
≤ln
,
因为a≤0,所以aln
≥aln
, ③
由①②③得
(
+
)+
+aln
≥
+
+aln
,
即
≥f
,
从而由凹函数的定义可知a≤0时,函数f(x)为凹函数.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810301301.png)
得f′(x)=2x-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810317344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810333294.png)
因为函数为[1,+∞)上的单调增函数.
则f′(x)≥0在[1,+∞)上恒成立,
即不等式2x-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810317344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810333294.png)
即a≥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810301301.png)
令φ(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810301301.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810301301.png)
(2)由f(x)=x2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810301301.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810442505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810457274.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810473342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810489332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810504551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810520285.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810457274.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810473342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810489332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810582436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810598469.png)
f
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810613573.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810629595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810676395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810691424.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810457274.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810473342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810489332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810754289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810473342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810489332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810629595.png)
又(x1+x2)2=(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810473342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810489332.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810582436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810676395.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810598469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810691424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810598469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810691424.png)
因为a≤0,所以aln
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810598469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810691424.png)
由①②③得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810457274.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810473342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810489332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810582436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810598469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810629595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810676395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810691424.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810442505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050810613573.png)
从而由凹函数的定义可知a≤0时,函数f(x)为凹函数.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目