题目内容
【题目】若二次函数的图象和直线无交点,现有下列结论:
①方程一定没有实数根;②若,则不等式对一切实数都成立;
③若,则必存在实数,使;④若,则不等式对一切实数都成立;⑤函数的图象与直线也一定没有交点,其中正确的结论是__________.(写出所有正确结论的编号)
【答案】①②④⑤
【解析】因为函数f(x)的图象与直线y=x没有交点,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因为f[f(x)]>f(x)>x或f[f(x)]<f(x)<x恒成立,所以f[f(x)]=x没有实数根;
故①正确;
若a>0,则不等式f[f(x)]>f(x)>x对一切实数x都成立;故②正确;
若a<0,则不等式f[f(x)]<x对一切实数x都成立,所以不存在x0,使f[f(x0)]>x0;
故③错误;
若a+b+c=0,则f(1)=0<1,可得a<0,因此不等式f[f(x)]<x对一切实数x都成立;
故④正确;
易见函数g(x)=f(-x),与f(x)的图象关于y轴对称,所以g(x)和直线y=-x也一定没有交点.故⑤正确;
故答案为:①②④⑤
练习册系列答案
相关题目