题目内容

【题目】若二次函数的图象和直线无交点,现有下列结论:

①方程一定没有实数根;②若,则不等式对一切实数都成立;

③若,则必存在实数,使;④若,则不等式对一切实数都成立;⑤函数的图象与直线也一定没有交点,其中正确的结论是__________.(写出所有正确结论的编号)

【答案】①②④⑤

【解析】因为函数f(x)的图象与直线y=x没有交点,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因为f[f(x)]>f(x)>x或f[f(x)]<f(x)<x恒成立,所以f[f(x)]=x没有实数根;
正确;
若a>0,则不等式f[f(x)]>f(x)>x对一切实数x都成立;故正确;
若a<0,则不等式f[f(x)]<x对一切实数x都成立,所以不存在x0,使f[f(x0)]>x0
错误;
a+b+c=0,则f(1)=0<1,可得a<0,因此不等式f[f(x)]<x对一切实数x都成立;
正确;
易见函数g(x)=f(-x),与f(x)的图象关于y轴对称,所以g(x)和直线y=-x也一定没有交点.故正确;
故答案为:①②④⑤

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网