题目内容
已知
是椭圆的两个焦点,过
且与椭圆长轴垂直的直线交椭圆于A、B两点,若
是等腰直角三角形,则这个椭圆的离心率是( )
A、
B、
C、
D、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170520712458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170520728332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170520821604.png)
A、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170520837464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170520868427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170520884352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170520993403.png)
D
由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,即
=2c,由此推导出这个椭圆的离心率.
解:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,∴
=2c
又∵c2=a2-b2
∴a2-c2-2ac=0
∴e2+2e-1=0
解之得:e=
-1或e=-
-1 (负值舍去).
故选D
题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中a,b,c和e的关系.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170521009420.png)
解:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170521009420.png)
又∵c2=a2-b2
∴a2-c2-2ac=0
∴e2+2e-1=0
解之得:e=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170521133344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170521133344.png)
故选D
题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中a,b,c和e的关系.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目