题目内容
【题目】函数f(x)=6cos2sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形
(1)求ω的值及函数f(x)的表达式;
(2)若f(x0),且x0∈(
),求f(x0+1)的值
【答案】(1)ω,f(x)=2
(2)
【解析】
(1)利用两角和公式和二倍角公式对函数解析式化简,根据题意求得BC的长,进而求得三角函数的最小正周期,则ω可得.求得f(x)的表达式,根据三角函数的性质求得函数f(x)的值域.
(2)由,知
x0
∈(
,
),由f(
)
,可求得即sin(
)
,利用两角和的正弦公式即可求得f(
+1).
(1)函数f(x)=6cos2sinωx﹣3=3cosωx
sinωx=2
sin(ωx
),由于△ABC为正三角形,所以三角形的高为
,所以BC=4.
所以函数f(x)的最小正周期为T=4×2=8,所以ω,
故得到f(x)=2.
(2)由于若f(x0),所以
,整理得
,由于x0∈(
)所以
,所以
,
所以f(x0+1)=2
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在
名男性司机中,开车时使用手机的有
人,开车时不使用手机的有
人;在
名女性司机中,开车时使用手机的有
人,开车时不使用手机的有
人.
(1)完成下面的列联表,并判断是否有
的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求
的分布列和数学期望
.
参考公式与数据:
参考数据:
参考公式
span>,其中
.
【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度
(
)的7组观测数据,其散点图如所示:
根据散点图,结合函数知识,可以发现产卵数和温度
可用方程
来拟合,令
,结合样本数据可知
与温度
可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:
27 | 74 | 182 |
表中,
.
(1)求和温度
的回归方程(回归系数结果精确到
);
(2)求产卵数关于温度
的回归方程;若该地区一段时间内的气温在
之间(包括
与
),估计该品种一只昆虫的产卵数的范围.(参考数据:
,
,
,
,
.)
附:对于一组数据,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
.