题目内容
【题目】如图,在四棱锥中,底面为正方形,底面,,为线段的中点.
(1)若为线段上的动点,证明:平面平面;
(2)若为线段,,上的动点(不含,),,三棱锥的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.
【答案】(1)证明见解析;(2)存在,.
【解析】
(1)利用,可得平面,根据面面垂直的判定定理可证平面平面;
(2) 由底面,得平面平面.将问题转化为点到直线的距离有无最大值即可解决.
(1)证明:因为,为线段的中点,所以,
因为底面,平面,所以,
又因为底面为正方形,所以,,
所以平面,
因为平面,所以,
因为,所以平面,
因为平面,所以平面平面.
(2)由底面,则平面平面,
所以点到平面的距离(三棱锥的高)等于点到直线的距离,
因此,当点在线段,上运动时,三棱锥的高小于或等于2,
当点在线段上运动时,三棱锥的高为2,
因为的面积为,
所以当点在线段上,三棱锥的体积取得最大值,
最大值为.
由于三棱锥的体积等于三棱锥的体积,
所以三棱锥的体积存在最大值.
【题目】网购是现在比较流行的一种购物方式,现随机调查50名个人收入不同的消费者是否喜欢网购,调查结果表明:在喜欢网购的25人中有18人是低收入的人,另外7人是高收入的人,在不喜欢网购的25人中有6人是低收入的人,另外19人是高收入的人.
喜欢网购 | 不喜欢网购 | 总计 | |
低收入的人 | |||
高收入的人 | |||
总计 |
(Ⅰ)试根据以上数据完成列联表,并用独立性检验的思想,指出有多大把握认为是否喜欢网购与个人收入高低有关系;
(Ⅱ)将5名喜欢网购的消费者编号为1、2、3、4、5,将5名不喜欢网购的消费者编号也记作1、2、3、4、5,从这两组人中各任选一人进行交流,求被选出的2人的编号之和为2的倍数的概率.
参考公式:
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |