题目内容

【题目】如图,在侧棱和底面垂直的三棱柱ABC﹣A1B1C1中,AB=1,AC= ,BC=2,AA1= ,点P为CC1的中点.
(1)求证:A1C⊥平面ABP;
(2)求平面ABP与平面A1B1P所成二面角的正弦值.

【答案】
(1)证明:在侧棱和底面垂直的三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,

∵AB平面ABC,∴AA1⊥AB,

∵AB=1,AC= ,BC=2,AA1= ,点P为CC1的中点,

∴BC2=AB2+AC2,∴AB⊥AC,

又AA1∩AC=A,∴AB⊥A1C,

在矩形ACC1A1中,A1C= =3,AP= =

在Rt△A1CA中,sin∠A1CA= =

在Rt△PAC中,cos =

∴sin∠A1CA=cos∠PAC,∴∠PAC+∠A1CA=90°,

∴A1C⊥AP,

∵AP∩AB=A,∴A1C⊥平面ABP


(2)解:由(1)知AB⊥AC,AA1⊥AB,AA1⊥AC,

以A为坐标原点,以AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,

则A(0,0,0),B(1,0,0),A1(0,0, ),C(0, ,0),P(0, ),

=(1,0,0),

设平面A1B1P的法向量为 =(x,y,z),

令y=1,得 =(0,1, ),

由(1)知平面ABP的一个法向量为 =(0,﹣ ),

∴cos< >= = =

∴sin< >= =

即平面ABP与平面A1B1P所成二面角的正弦值为


【解析】(1)推导出AA1⊥AB,AB⊥AC,从而AB⊥A1C,再推导出A1C⊥AP,由此能证明A1C⊥平面ABP.(2)以A为坐标原点,以AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出平面ABP与平面A1B1P所成二面角的正弦值.
【考点精析】认真审题,首先需要了解直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网