题目内容
【题目】如图,在侧棱和底面垂直的三棱柱ABC﹣A1B1C1中,AB=1,AC= ,BC=2,AA1= ,点P为CC1的中点.
(1)求证:A1C⊥平面ABP;
(2)求平面ABP与平面A1B1P所成二面角的正弦值.
【答案】
(1)证明:在侧棱和底面垂直的三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,
∵AB平面ABC,∴AA1⊥AB,
∵AB=1,AC= ,BC=2,AA1= ,点P为CC1的中点,
∴BC2=AB2+AC2,∴AB⊥AC,
又AA1∩AC=A,∴AB⊥A1C,
在矩形ACC1A1中,A1C= =3,AP= = ,
在Rt△A1CA中,sin∠A1CA= = ,
在Rt△PAC中,cos = ,
∴sin∠A1CA=cos∠PAC,∴∠PAC+∠A1CA=90°,
∴A1C⊥AP,
∵AP∩AB=A,∴A1C⊥平面ABP
(2)解:由(1)知AB⊥AC,AA1⊥AB,AA1⊥AC,
以A为坐标原点,以AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,
则A(0,0,0),B(1,0,0),A1(0,0, ),C(0, ,0),P(0, , ),
=(1,0,0), ,
设平面A1B1P的法向量为 =(x,y,z),
则 ,
令y=1,得 =(0,1, ),
由(1)知平面ABP的一个法向量为 =(0,﹣ , ),
∴cos< >= = = ,
∴sin< >= = .
即平面ABP与平面A1B1P所成二面角的正弦值为 .
【解析】(1)推导出AA1⊥AB,AB⊥AC,从而AB⊥A1C,再推导出A1C⊥AP,由此能证明A1C⊥平面ABP.(2)以A为坐标原点,以AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出平面ABP与平面A1B1P所成二面角的正弦值.
【考点精析】认真审题,首先需要了解直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想).