题目内容
【题目】设函数.
(1)当曲线在点处的切线与直线垂直时,求的值;
(2)若函数有两个零点,求实数的取值范围.
【答案】(1) ;(2) .
【解析】试题分析:(1)求出函数的导数,得到关于a的方程,解出即可;(2)方程恰有两个不相等的正实根,即方程恰有两个不相等的正实根. 设函数,根据单调性即可进行求解.
试题解析:
由题意知,函数的定义域为, ,∴,解得.
(2)若函数有两个零点,则方程恰有两个不相等的正实根,即方程恰有两个不相等的正实根.设函数,∴ .
当时, 恒成立,则函数在上是增函数,∴函数最多一个零点,不合题意,舍去;当时,令,解得,令,解得,则函数在内单调递减,在上单调递增.易知时, 恒成立,要使函数有2个正零点,则的最小值,即,即,∵,∴,解得,即实数的取值范围为.
练习册系列答案
相关题目
【题目】某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:
分组 | 频数 | 频率 |
[0,1) | 10 | b |
[1,2) | 20 | 0.20 |
[2,3) | a | 0.30 |
[3,4) | 20 | 0.20 |
[4,5) | 10 | 0.10 |
[5,6] | 10 | 0.10 |
合计 | 100 | 1.00 |
(1)求表中a和b的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.