题目内容
(本题满分16分)
已知数列中,且点在直线上。
(Ⅰ)求数列的通项公式;
(Ⅱ)若函数求函数的最小值;
(Ⅲ)设表示数列的前项和。试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由。
已知数列中,且点在直线上。
(Ⅰ)求数列的通项公式;
(Ⅱ)若函数求函数的最小值;
(Ⅲ)设表示数列的前项和。试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由。
解:(1)由点P在直线上,即, ------------2分
且,数列{}是以1为首项,1为公差的等差数列
,同样满足,所以---------------4分
(2)
-----------6分
所以是单调递增,故的最小值是----------------10分
(3),可得,-------12分
,
……
,n≥2------------------14分
故存在关于n的整式g(x)=n,使得对于一切不小于2的自然数n恒成立----16分
且,数列{}是以1为首项,1为公差的等差数列
,同样满足,所以---------------4分
(2)
-----------6分
所以是单调递增,故的最小值是----------------10分
(3),可得,-------12分
,
……
,n≥2------------------14分
故存在关于n的整式g(x)=n,使得对于一切不小于2的自然数n恒成立----16分
略
练习册系列答案
相关题目