题目内容
(本小题满分12分)已知数列
的前n项和为
等差数列
,又
成等比数列.
(I)求数列
、
的通项公式;
(II)求数列
的前n项和
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193904977453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939050401146.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939050711449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905086714.png)
(I)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193904977453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905118475.png)
(II)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905133560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905180373.png)
解:(1)
。
,
.
而
.
数列
是以1为首项,3为公比的等比数列.
. (4分)
.
在等差数列
中,
,
.
设等数列
的公差为
、
、
成等比数列,
.
,解得
或
,
舍去
,取
,
. (8分)
(3)由(1)知
,则
,① (9分)
,②
①-②,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939068344335.png)
. (12分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939052111950.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939052271206.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939052421026.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905258799.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905274191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193904977453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905305884.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905336707.png)
在等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905118475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905414674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905430452.png)
设等数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905118475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905820602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905851479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905866490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905882928.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905898895.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905913449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905929416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193906022896.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905913449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193906428628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193906475890.png)
(3)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939064901181.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939066001770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939066151888.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193905274191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231939068344335.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193906849603.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目