题目内容
在正三角形ABC的边AB、AC上分别取D、E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上,在这种情况下,若要使AD最小,求AD∶AB的值.
AD∶DB=2-3
按题意,设折叠后A点落在边BC上改称P点,显然A、P两点关于折线DE对称,又设∠BAP=θ,∴∠DPA=θ,∠BDP=2θ,
再设AB=a,AD=x,∴DP=x 在△ABC中,
∠APB=180°-∠ABP-∠BAP=120°-θ,
由正弦定理知: ∴BP=
在△PBD中,
,
∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,
∴当60°+2θ=90°,即θ=15°时,
sin(60°+2θ)=1,此时x取得最小值a,即AD最小,
∴AD∶DB=2-3.
再设AB=a,AD=x,∴DP=x 在△ABC中,
∠APB=180°-∠ABP-∠BAP=120°-θ,
由正弦定理知: ∴BP=
在△PBD中,
,
∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,
∴当60°+2θ=90°,即θ=15°时,
sin(60°+2θ)=1,此时x取得最小值a,即AD最小,
∴AD∶DB=2-3.
练习册系列答案
相关题目