题目内容
已知数列
中,
,
.
(1)若
,证明
是等比数列;
(2)求数列
的通项公式;
(3)若
,求数列
的前
项和
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225846875480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225846890382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847031621.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847062580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847140487.png)
(2)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225846875480.png)
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847233527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847358445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847374297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847389388.png)
(1) 见解析(2)
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847436695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847405552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847436695.png)
本试题主要是考查了数列的定义和数列的通项公式的求解以及数列求和的综合运用。
(1)由题意得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847467897.png)
是首项为
,公比为
的等比数列。
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847811568.png)
(3)因为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847826669.png)
,那么利用错位相减法可知和式。
解:(1)由题意得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847467897.png)
是首项为
,公比为
的等比数列。
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847811568.png)
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847826669.png)
……①
……②
①-②得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232258482162205.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225848232837.png)
(1)由题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847467897.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847483957.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847717518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847733291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847733291.png)
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847779947.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847811568.png)
(3)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847826669.png)
,那么利用错位相减法可知和式。
解:(1)由题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847467897.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847483957.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847717518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847733291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847733291.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847779947.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847811568.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225847826669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232258481691507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232258481851213.png)
①-②得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232258482162205.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225848232837.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目