题目内容
8.如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.(1)求证:平面CBE⊥平面CDE;
(2)求二面角C-BE-F的余弦值.
分析 (1)取CE的中点M,连接BM、FM,通过证明BM⊥平面CDE,利用平面与平面垂直的判定定理证明平面 BCE⊥平面 CDE.
(2)过F作FN⊥CE交CE于N,过N作NH⊥BE,连接HF,则∠NHF就是二面角C-BE-F的平面角.
解答 (1)证明:因为DE⊥平面ACD,DE?平面CDE,
所以平面CDE⊥平面ACD.
在底面ACD中,AF⊥CD,由面面垂直的性质定理知,AF⊥平面CDE.
取CE的中点M,连接BM、FM,
由已知可得FM=AB且FM∥AB,则四边形FMBA为平行四边形,从而BM∥AF.
所以BM⊥平面CDE.
又BM?平面BCE,则平面CBE⊥平面CDE.…(7分)
(2)解:过F作FN⊥CE交CE于N,过N作NH⊥BE,连接HF,
则∠NHF就是二面角C-BE-F的平面角.
在Rt△FNH中,NH=$\frac{3\sqrt{6}}{2\sqrt{5}}$,FH=$\frac{4}{\sqrt{5}}$,
所以cos∠NHF=$\frac{NH}{FH}$=$\frac{3\sqrt{6}}{8}$
故二面角C-BE-F的余弦值为$\frac{3\sqrt{6}}{8}$…(15分)
点评 本题考查平面与平面垂直的判定,考查二面角的余弦值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
18.三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是( )
A. | [-6,2] | B. | [-6,0)∪( 0,2] | C. | [-2,0)∪( 0,6] | D. | (0,2] |
16.已知命题p:sinα-cosα=$\sqrt{2}$,命题q:双曲线$\frac{{x}^{2}}{co{s}^{2}α}$-$\frac{{y}^{2}}{si{n}^{2}α}$=1的渐近线与圆x2+(y-1)2=$\frac{1}{2}$相切,则命题p为命题q为( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
3.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=3,b=2$\sqrt{6}$,∠B=2∠A,则cosA的值为( )
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{2\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{6}}}{6}$ | D. | $\frac{{\sqrt{6}}}{8}$ |
13.已知函数f(x)=|2x+1|+|2x-3|,若关于x的不等式f(x)<|a-1|的解集非空,则实数a的取值范围是( )
A. | [-3,5] | B. | (-3,5) | C. | (-∞,-3]∪[5,+∞) | D. | (-∞,-3)∪(5,+∞) |
20.已知底面边长为$\sqrt{3}$的正三棱柱ABC-A1B1C1的体积为$\frac{9}{4}$,若点P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |