题目内容

8.如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.
(1)求证:平面CBE⊥平面CDE;
(2)求二面角C-BE-F的余弦值.

分析 (1)取CE的中点M,连接BM、FM,通过证明BM⊥平面CDE,利用平面与平面垂直的判定定理证明平面 BCE⊥平面 CDE.
(2)过F作FN⊥CE交CE于N,过N作NH⊥BE,连接HF,则∠NHF就是二面角C-BE-F的平面角.

解答 (1)证明:因为DE⊥平面ACD,DE?平面CDE,
所以平面CDE⊥平面ACD.
在底面ACD中,AF⊥CD,由面面垂直的性质定理知,AF⊥平面CDE.
取CE的中点M,连接BM、FM,
由已知可得FM=AB且FM∥AB,则四边形FMBA为平行四边形,从而BM∥AF.
所以BM⊥平面CDE.
又BM?平面BCE,则平面CBE⊥平面CDE.…(7分)
(2)解:过F作FN⊥CE交CE于N,过N作NH⊥BE,连接HF,
则∠NHF就是二面角C-BE-F的平面角.
在Rt△FNH中,NH=$\frac{3\sqrt{6}}{2\sqrt{5}}$,FH=$\frac{4}{\sqrt{5}}$,
所以cos∠NHF=$\frac{NH}{FH}$=$\frac{3\sqrt{6}}{8}$
故二面角C-BE-F的余弦值为$\frac{3\sqrt{6}}{8}$…(15分)

点评 本题考查平面与平面垂直的判定,考查二面角的余弦值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网