题目内容
【题目】已知△ABC的顶点A的坐标为(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在的直线方程为x-2y-5=0.
(Ⅰ)求顶点C的坐标;
(Ⅱ)求直线AB的方程.
【答案】(Ⅰ)(4,3); (Ⅱ)2x-3y-7=0.
【解析】
(Ⅰ)通过AC边上的高线方程得AC的斜率,由点斜式得AC的方程,AC的方程与CM的方程联立得点C的坐标;
(Ⅱ)设出点B的坐标,根据中点关系,得M的坐标代入CM的方程,B点坐标代入BH方程,两个方程联立可解得B的坐标,再由两点式得AB的方程.
(Ⅰ)∵AC边上的高BH所在直线方程为x-2y-5=0,
∴直线AC的斜率k=-2,
∴直线AC的方程为y-1=-2(x-5),即:2x+y-11=0,
∵直线AC与CM相交于点C,
∴由解得:
.
∴点C的坐标为(4,3);
(Ⅱ)设B(x1,y1),∵M是AB中点,且A(5,1),
∴点M的坐标为
代入CM所在直线方程2x-y-5=0并化简得:2x1-y1-1=0,
又∵点B(x1,y1)在直线BH上,∴x1-2y1-5=0.
∴由解得:
.
∴点B的坐标为(-1,-3)
∴直线AB的方程为,即:2x-3y-7=0.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示.
x | ﹣1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
下列关于函数f(x)的命题:
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为5;
④当1<a<2时,函数y=f(x)﹣a有4个零点.
其中所有真命题的序号为 .
【题目】某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:
第一次月考物理成绩 | 第二次月考物理成绩 | 第三次月考物理成绩 | |
学生甲 | 80 | 85 | 90 |
学生乙 | 81 | 83 | 85 |
学生丙 | 90 | 86 | 82 |
则下列结论正确的是( )
A. 甲,乙,丙第三次月考物理成绩的平均数为86
B. 在这三次月考物理成绩中,甲的成绩平均分最高
C. 在这三次月考物理成绩中,乙的成绩最稳定
D. 在这三次月考物理成绩中,丙的成绩方差最大
【题目】某公司2016年前三个月的利润(单位:百万元)如下:
月份 | 1 | 2 | 3 |
利润 | 2 | 3.9 | 5.5 |
(1)求利润关于月份
的线性回归方程;
(2)试用(1)中求得的回归方程预测4月和5月的利润;
(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?
相关公式:.
【答案】(1);(2)905万;(3)6月
【解析】试题(1)根据平均数和最小二乘法的公式,求解,求出
,即可求解回归方程;(2)把
和
分别代入,回归直线方程,即可求解;(3)令
,即可求解
的值,得出结果.
试题解析:(1),
,
,
故利润关于月份
的线性回归方程
.
(2)当时,
,故可预测
月的利润为
万.
当时,
, 故可预测
月的利润为
万.
(3)由得
,故公司2016年从
月份开始利润超过
万.
考点:1、线性回归方程;2、平均数.
【题型】解答题
【结束】
21
【题目】已知定义在上的函数
(
),并且它在
上的最大值为
(1)求的值;
(2)令,判断函数
的奇偶性,并求函数
的值域.