题目内容

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

1

2

3

利润

2

3.9

5.5

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测4月和5月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?

相关公式:.

【答案】(1);(2)905万;(3)6月

【解析】试题(1)根据平均数和最小二乘法的公式,求解,求出,即可求解回归方程;(2)把分别代入,回归直线方程,即可求解;(3)令,即可求解的值,得出结果.

试题解析:(1

故利润关于月份的线性回归方程.

2)当时,,故可预测月的利润为.

时,, 故可预测月的利润为.

3)由,故公司2016年从月份开始利润超过.

考点:1、线性回归方程;2、平均数.

型】解答
束】
21

【题目】已知定义在上的函数),并且它在上的最大值为

(1)求的值;

(2)令,判断函数的奇偶性,并求函数的值域.

【答案】(1) (2) 为偶函数,

【解析】

(1)根据函数单调性及定义域,结合最大值,代入即可求得a的值。

(2)先判断函数的定义域;再根据奇偶函数的定义判断函数的奇偶性。在定义域范围内,求函数的值域。

(1)因为,则,则.

(2)∵,∴

,∴函数的定义域关于原点对称.

,∴为偶函数.

,令

.

的值域为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网