题目内容
【题目】如图,一条巡逻船由南向北行驶,在处测得山顶在北偏东方向上,匀速向北航行分钟到达处,测得山顶位于北偏东方向上,此时测得山顶的仰角,若山高为千米,
(1)船的航行速度是每小时多少千米?
(2)若该船继续航行分钟到达处,问此时山顶位于处的南偏东什么方向?
【答案】(1)航行速度是每小时千米.(2)山顶位于处南偏东.
【解析】试题分析:(1)直角三角形中可求得的值,再由的正弦定理可求得的值,结合时间可求航行速度;(2)在中由余弦定理求得,再在中,由正弦定理,可得的正弦值,可确定的位置.
试题解析:(1)在中,
在 中,由正弦定理得: ,
所以,
船的航行速度是每小时千米.
(2)在中,由余弦定理得: ,
在中,由正弦定理得: ,
所以,山顶位于处南偏东.
练习册系列答案
相关题目
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,