题目内容
【题目】已知函数f(x)x2﹣xlnx,g(x)=(m﹣x)lnx+(1﹣m)x(m<0).
(1)讨论函数f′(x)的单调性;
(2)求函数F(x)=f(x)﹣g(x)在区间[1,+∞)上的最小值.
【答案】(1) f′(x)在(0,1)上单调递减,在(1,+∞)上单调递增,(2)见解析
【解析】
(1)令,求导即可得到的单调区间.
(2)令,得,,比较两个根的大小,分类讨论每种情况的单调区间个最值即可.
(1),的定义域为,
令,,
令,得.
当时,,单调递减,
当时,,单调递增,
则在上单调递减,在上单调递增.
(2)由,
则,
令,得,,
当,即时,在上单调递增,
其最小值为,
当,即时,在上恒成立,
0在上恒成立,
所以在上单调递减,在上单调递增,
其最小值为.
综上,当时,在上的最小值为,
当时,在上的最小值为.
练习册系列答案
相关题目