题目内容
【题目】如图,在三棱锥中,已知是正三角形,平面平面,,为的中点,在棱上,且.
(1)求证:平面;
(2)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.
【答案】(1)证明见解析;(2)存在,.
【解析】
(1)取中点,由三角形中位线和已知长度关系可知且为中点,三线合一得到;由面面垂直性质可得平面,由线面垂直性质知;由线面垂直的判定定理可证得结论;
(2)假设存在满足题意的点,由线面平行的性质可知;根据重心的性质可得到比例关系,即,从而可说明存在点.
(1)取中点,连接
分别为中点
又,
,即为中点
为等边三角形,为中点
平面平面,平面平面 平面
平面
平面, 平面
(2)假设上存在点,使得平面
连接,交于点,连接
平面,平面,平面平面
为等边的两条中线 为的重心
,即
存在点,满足时,平面
练习册系列答案
相关题目
【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数(单位:人)与时间(单位:年)的数据,列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式 ,参考数据.
(2)建立关于的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).
(参考公式: ,)