题目内容
【题目】如图所示,正三棱柱的底面边长为2, 是侧棱的中点.
(1)证明:平面平面;
(2)若平面与平面所成锐角的大小为,求四棱锥的体积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)要证平面平面,转证平面,又,即证平面.(2)建立空间坐标系,由平面与平面所成锐角的大小为,得到,进而得到四棱锥的体积.
试题解析:
解:(1)如图①,取的中点, 的中点,连接,易知
又,∴四边形为平行四边形,∴.
又三棱柱是正三棱柱,
∴为正三角形,∴.
又平面,
,而,
∴平面.
又,
∴平面.
又平面,
所以平面平面
(2)(方法一)建立如图①所示的空间直角坐标系,
设,则,得
.
设为平面的一个法向量.
由得
即.
显然平面的一个法向量为,
所以,
即.
所以.
(方法二)如图②,延长与交于点,连接.
∵, 为的中点,∴也是的中点,
又∵是的中点,∴.
∵平面,∴平面.
∴为平面与平面所成二面角的平面角.
所以,∴.
练习册系列答案
相关题目