题目内容
【题目】“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野五项运动.规定每一项运动的前三名得分都分别为,,(,且),每位选手各项得分之和为最终得分.在一次比赛中,只有甲、乙、丙三人参加“现代五项”,甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名.则:__________,游泳比赛的第三名是__________.
【答案】 5 乙
【解析】分析:甲最终得分,乙和丙最值各得分,得 ,即每个项目三个名次总分是分,每个项目三个名次的分值情况只有两种:①分、分、分;②分、分、分,在各种情况下,对甲乙丙的得分合理性一一判定即可.
详解:甲最终得分,乙和丙最值各得分,
,
即每个项目三个各次总分是分,
每个项目三个各次的分值情况只有两种:①分、分、分;②分、分、分,
对于情况②分、分、分,五场比赛甲不可能得分,不合题意;
只能情况①分、分、分符合题意,所以,
因为乙的马术比赛获得第一名,分,余下四个项目共得分,只能是四个第三名;
余下四个第一名,若甲得三个第一名,分,还有两个项目得分不可能,
故甲必须得四个第一名,一个第二名,
余下一个马术第三名,四个第二名刚好符合丙得分,
由此可得游泳比赛的第三名是乙,
故答案为 , 乙.
【题目】进入春天,大气流动性变好,空气质量随之提高,自然风光越来越美,自驾游乡村游也就越来越热.某旅游景区试图探究车流量与景区接待能力的相关性,确保服务质量和游客安全,以便于确定是否对进入景区车辆实施限行.为此,该景区采集到过去一周内某时段车流量与接待能力指数的数据如表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
车流量(x千辆) | 10 | 9 | 9.5 | 10.5 | 11 | 8 | 8.5 |
接待能力指数y | 78 | 76 | 77 | 79 | 80 | 73 | 75 |
(I)根据表中周一到周五的数据,求y关于x的线性回归方程.
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为该线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?
附参考公式及参考数据:线性回归方程,其中;
【题目】为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
序号 | 分组(分数) | 组中值 | 频数(人数) | 频率 |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合计 | 50 | 1 |
(1)填充频率分布表中的空格;
(2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的值.