题目内容

【题目】已知四面体ABCD的顶点都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,过AD作相互垂直的平面α、β,若平面α、β截球O所得截面分别为圆M、N,则(
A.MN的长度是定值
B.MN长度的最小值是2
C.圆M面积的最小值是2π
D.圆M、N的面积和是定值8π

【答案】A
【解析】解:∵AB=BC=AC=2 ,DA=DB=DC=2, ∴DA、DB、DC两两互相垂直,
过AD作相互垂直的平面α、β,若平面α、β截球O所得截面分别为圆M、N,则M,N分别是AB,AC的中点,MN= BC=
故选A.

【考点精析】利用球内接多面体对题目进行判断即可得到答案,需要熟知球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网