题目内容
(本小题满分12分)如图,五面体
中,
,底面ABC是正三角形,
=2.四边形
是矩形,二面角
为直二面角,D为
中点。
(I)证明:
平面
;
(II)求二面角
的余弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644380599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644396511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644412396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644427498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644443572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644458402.png)
(I)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644474504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644490482.png)
(II)求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644521554.png)
(1)根据中位线的性质,做辅助线得到
,然后结合线面平行的判定定理得到结论。
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644552502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644536613.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644552502.png)
试题分析:解:说明:由于建立空间直角坐标系的多样性,所以解法也具有多样性,以下解法仅供参考。
(I)证明:连结
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644568679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644583380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240046445994005.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644614217.png)
∵四边形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644630500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644646292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644661431.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644536613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644692195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644708423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644490482.png)
(II)建立空间直角坐标系
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644755522.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644770533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644786631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644802593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644817800.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644833716.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240046448481343.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644864675.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644490482.png)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240046448951776.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644911883.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644942289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644490482.png)
法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644973682.png)
而平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644989447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004645020625.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240046450361509.png)
所以二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004645051555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004644552502.png)
点评:解决立体几何中的线面的位置关系的判定和二面角的问题,一般可以从两个角度来得到,几何性质法,以及向量法得到,注意灵活的掌握,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目