题目内容
(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,
ABC=60
,EC
面ABCD,FA
面ABCD,G为BF的中点,若EG//面ABCD.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240043176495238.jpg)
(1)求证:EG
面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
如图,在多面体ABCDEF中,ABCD为菱形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317586258.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317602189.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240043176495238.jpg)
(1)求证:EG
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
(2)若AF=AB,求二面角B—EF—D的余弦值.
(1)∵在正三角形ABC中,CM
AB,又AF
CM∴EG
AB, EG
AF,∴EG
面ABF.
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317758328.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317758328.png)
试题分析:(1)取AB的中点M,连结GM,MC,G为BF的中点,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240043177747024.jpg)
所以GM //FA,又EC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
∵CE//AF,
∴CE//GM,
∵面CEGM
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317836255.png)
EG// 面ABCD,
∴EG//CM,
∵在正三角形ABC中,CM
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
∴EG
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
∴EG
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317618183.png)
(2)建立如图所示的坐标系,设AB=2,
则B(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317961456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240043179616938.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317992400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318008413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318023337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318039421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318023337.png)
设平面BEF的法向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318086348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318101459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318132991.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318148359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318164576.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318086348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318210481.png)
同理,可求平面DEF的法向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318226349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318210481.png)
设所求二面角的平面角为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318257297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004318273430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004317758328.png)
点评:本题考查线面垂直,考查面面角,正确运用线面垂直的判定,求出平面的法向量是解题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目