题目内容
【题目】设椭圆的一个焦点为,四条直线,所围成的区域面积为.
(1)求的方程;
(2)设过的直线与交于不同的两点,设弦的中点为,且(为原点),求直线的方程.
【答案】(1)(2)
【解析】
(1)由题意,结合椭圆的性质可得的方程组,解方程组即可求得椭圆的标准方程.
(2)因为直线过定点,设出直线方程,并联立椭圆方程.化简后利用判别式求得斜率的取值范围.由三角形几何性质可知,结合平面向量数量积定义及韦达定理求得斜率的方程,解方程即可求得斜率,进而可得直线的方程.
(1)依题意得,解得
椭圆的方程为.
(2)易知直线的斜率存在,并设直线方程为,
联立椭圆,,化简得,
设、,
,
且,
由三角形几何性质可知
,
即,
.
将
代入上式得
化简得,所以
故所求的直线方程为
练习册系列答案
相关题目
【题目】为推行“高中新课程改革”,某数学老师分别用“传统教学”和“新课程”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果.期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于120分者为“成绩优良”.
分数 | |||||
甲班频数 | 7 | 5 | 4 | 3 | 1 |
乙班频数 | 1 | 2 | 5 | 5 | 7 |
(1)从以上统计数据填写下面列联表,并判断能否犯错误的频率不超过0.01的前提下认为“成绩优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
P() | 0.10 | 0.05 | 0.025 | 0.010 |
2.706 | 3.841 | 5.024 | 6.635 |
附:,其中.临界值表如上表:
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.