题目内容
【题目】已知椭圆过点,且其中一个焦点的坐标为.
(1)求椭圆的方程;
(2)过椭圆右焦点的直线与椭圆交于两点,在轴上是否存在点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2)见解析
【解析】
(1)由椭圆定义直接求得即可.
(2)假设存在点,使得为定值,当直线的斜率不为时,可设直线的方程为,联立直线方程与椭圆方程通过设而不求得的表达式,再讨论其是否过定点.最后将直线的斜率为的情况代入检验即可.
(1)由已知得,∴,则的方程为;
(2)假设存在点,使得为定值,
当直线的斜率不为时,可设直线的方程为,
联立, 得
设,则,
要使上式为定值, 即与无关,应有
解得,此时
当直线的斜率为时,不妨设,当的坐标为时
综上,存在点使得为定值.
练习册系列答案
相关题目
【题目】某工厂生产一种产品,根据预测可知,该产品的产量平稳增长,记2015年为第1年,第x年与年产量(万件)之间的关系如下表所示:
x | 1 | 2 | 3 | 4 |
4.00 | 5.52 | 7.00 | 8.49 |
现有三种函数模型:,,
(1)找出你认为最适合的函数模型,并说明理由,然后选取这两年的数据求出相应的函数解析式;
(2)因受市场环境的影响,2020年的年产量估计要比预计减少30%,试根据所建立的函数模型,估计2020年的年产量.