题目内容
【题目】已知函数 ,且 .
(1)试求 的值;
(2)用定义证明函数 在 上单调递增;
(3)设关于 的方程 的两根为 ,试问是否存在实数 ,使得不等式 对任意的 及 恒成立?若存在,求出 的取值范围;若不存在说明理由.
【答案】
(1)解:∵
∴
∴
(2)解:∵
∴
设 ,
∴ ,
∵
∴
∴
∴
又∵ ,
∴
∴
∴ 在 上单调递增
(3)解:∵
∴
∴
又∵
∴ ,故只需当 ,使得 恒成立,即 在 恒成立,也即 在 恒成立,
∴令 ,
由第(2)问可知 在 上单调递增,
同理可得 在 上单调递减.
∴
∴
故 的取值集合是 .
【解析】(1)将x=1代入解析式,即可解出a的值,(2)根据单调增函数的定义即可证明,(3)方程f(x)=x+b,得出x2-bx+1=0,由,得出,故只须当,使得恒成立,即在恒成立,令,由(2)问知,f(m)单调性,不难求出f(m)的最小值.
练习册系列答案
相关题目