题目内容

8.函数f(x)=ex-ax-1在R上单调递增,则实数a的取值范围为(  )
A.RB.[0,+∞)C.(-∞,0]D.[-1,1]

分析 求函数的导数,利用导数和单调性之间的关系进行求解即可.

解答 解:∵f(x)=ex-ax-1在R上单调递增,
∴f′(x)≥0恒成立,
即f′(x)=ex-a≥0恒成立,
即a≤ex
∵ex>0,
∴a≤0,
故选:C

点评 本题主要考查函数单调性和导数之间的关系,将函数单调性转化为f′(x)≤0或f′(x)≥0恒成立是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网