题目内容
【题目】在直角坐标系中,曲线的参数方程为(为参数,),曲线的上点 对应的参数,将曲线经过伸缩变换后得到曲线,直线的参数方程为
(1)说明曲线是哪种曲线,并将曲线转化为极坐标方程;
(2)求曲线上的点到直线的距离的最小值.
【答案】(1),(2)
【解析】
试题(1)先由对应的参数得,解得,再代入得,根据三角函数同角关系:消参数得普通方程,最后利用 将曲线的直角坐标方程化为极坐标方程;(2)根据 将直线的极坐标方程化为直角坐标方程,再利用参数方程表示点到直线距离公式得,最后利用三角函数有界性求最值.
试题解析:解:(1)当,所以
曲线的参数方程为(为参数,),
有得,带入得,即,
化为普通方程为,为椭圆曲线化为极坐标方程为
(2)直线的普通方程为,点到直线的方程距离为所以最小值为
练习册系列答案
相关题目
【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:
一次购物款(单位:元) | |||||
顾客人数 |
统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.
(Ⅰ)试确定, 的值,并估计每日应准备纪念品的数量;
(Ⅱ)为了迎接春节,商场进行让利活动,一次购物款元及以上的一次返利元;一次购物不超过元的按购物款的百分比返利,具体见下表:
一次购物款(单位:元) | ||||
返利百分比 |
请问该商场日均大约让利多少元?