题目内容
【题目】某共享单车企业在城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表:
根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数:
模型甲:,模型乙:.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1元)(备注:,称为相应于点的残差);
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这家企业在4城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入7.2元;市场投放量达到1.2万辆时,平均每辆单车一天能收入6.8元.若按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.(利润收入成本)
【答案】(1)模型甲的拟合效果更好;(2)选择投放1.2万辆能获得更多利润.
【解析】分析:(1)根据所给回归方程,计算出残差可完成表格;②由表格中数据可得 ,,因为,故模型甲的拟合效果更好;(2)由(1)模型甲可知,每辆车的成本为(元),一天获得的总利润为元〉,由(1)模型甲可知,每辆车的成本为(元),一天获得的总利润为(元),从而可得结果.
详解:(1)①经计算,可得下表:
② ,,
因为,故模型甲的拟合效果更好.
(2)若投放量为1万辆,由(1)模型甲可知,每辆车的成本为(元),
这样一天获得的总利润为元〉,
若投放量为1.2万辆,由(1)模型甲可知,每辆车的成本为(元),
这样一天获得的总利润为(元),
因为,所以选择投放1.2万辆能获得更多利润.
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;
(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
【题目】在国内汽车市场中,国产SUV出现了持续不退的销售热潮,2018年国产SUV销量排行榜完整版已经出炉,某品牌车型以惊人的销量成绩击退了所有虎视眈眈的对手,再次霸气登顶,下面是该品牌国产SUV分别在2017年与2018年7~11月份的销售量对比表
时间 | 7月 | 8月 | 9月 | 10月 | 11月 |
2017年(单位:万辆) | 2.8 | 3.9 | 3.5 | 4.4 | 5.4 |
2018年(单位:万辆) | 3.8 | 3.9 | 4.5 | 4.9 | 5.4 |
(Ⅰ)若从7月至11月中任选两个月份,求至少有一个月份这两年该国产品牌SUV销量相同的概率。
(Ⅱ)分别求这两年7月至11月的销售数据的平均数,并直接判断哪年的销售量比较稳定。