题目内容

【题目】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),

(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.

【答案】
(1)解:设BD=x,则CD=3﹣x

∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x

∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D

∴AD⊥平面BCD

∴VABCD= ×AD×SBCD= ×(3﹣x)× ×x(3﹣x)= (x3﹣6x2+9x)

设f(x)= (x3﹣6x2+9x) x∈(0,3),

∵f′(x)= (x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数

∴当x=1时,函数f(x)取最大值

∴当BD=1时,三棱锥A﹣BCD的体积最大


(2)解:以D为原点,建立如图直角坐标系D﹣xyz,

由(1)知,三棱锥A﹣BCD的体积最大时,BD=1,AD=CD=2

∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E( ,1,0),且 =(﹣1,1,1)

设N(0,λ,0),则 =(﹣ ,λ﹣1,0)

∵EN⊥BM,∴ =0

即(﹣1,1,1)(﹣ ,λ﹣1,0)= +λ﹣1=0,∴λ= ,∴N(0, ,0)

∴当DN= 时,EN⊥BM

设平面BMN的一个法向量为 =(x,y,z),由 =(﹣1, ,0)

,取 =(1,2,﹣1)

设EN与平面BMN所成角为θ,则 =(﹣ ,﹣ ,0)

sinθ=|cos< >|=| |= =

∴θ=60°

∴EN与平面BMN所成角的大小为60°


【解析】(1)设BD=x,先利用线面垂直的判定定理证明AD即为三棱锥A﹣BCD的高,再将三棱锥的体积表示为x的函数,最后利用导数求函数的最大值即可;(2)由(1)可先建立空间直角坐标系,写出相关点的坐标和相关向量的坐标,设出动点N的坐标,先利用线线垂直的充要条件计算出N点坐标,从而确定N点位置,再求平面BMN的法向量,从而利用夹角公式即可求得所求线面角
【考点精析】本题主要考查了用空间向量求直线与平面的夹角的相关知识点,需要掌握设直线的方向向量为,平面的法向量为,直线与平面所成的角为的夹角为, 则的余角或的补角的余角.即有:才能正确解答此题.

练习册系列答案
相关题目

【题目】已知函数,且).

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最大值.

【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .

【解析】试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.

试题解析】

(Ⅰ)

,则.

,∴上单调递增,

从而得上单调递增,又∵

∴当时, ,当时,

因此, 的单调增区间为,单调减区间为.

(Ⅱ)由(Ⅰ)得上单调递减,在上单调递增,

由此可知.

.

.

∵当时, ,∴上单调递增.

又∵,∴当时, ;当时, .

①当时, ,即,这时,

②当时, ,即,这时, .

综上, 上的最大值为:当时,

时, .

[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.

型】解答
束】
22

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网