题目内容
【题目】在国内汽车市场中,国产SUV出现了持续不退的销售热潮,2018年国产SUV销量排行榜完整版已经出炉,某品牌车型以惊人的销量成绩击退了所有虎视眈眈的对手,再次霸气登顶,下面是该品牌国产SUV分别在2017年与2018年7~11月份的销售量对比表
时间 | 7月 | 8月 | 9月 | 10月 | 11月 |
2017年(单位:万辆) | 2.8 | 3.9 | 3.5 | 4.4 | 5.4 |
2018年(单位:万辆) | 3.8 | 3.9 | 4.5 | 4.9 | 5.4 |
(Ⅰ)若从7月至11月中任选两个月份,求至少有一个月份这两年该国产品牌SUV销量相同的概率。
(Ⅱ)分别求这两年7月至11月的销售数据的平均数,并直接判断哪年的销售量比较稳定。
【答案】(Ⅰ);(Ⅱ),,年销售量更稳定.
【解析】
(Ⅰ)列举出所有可能的情况,在其中找到至少一个月份两年销量相同的情况,根据古典概型概率公式求得结果;(Ⅱ)根据平均数和方差的计算公式分别计算出两年销量的平均数与方差;由可得结论.
(Ⅰ)从月至月中任选两个月份,记为,所有可能的结果为:
,,,,,,,,,,共种情况
记事件为“至少有一个月份这两年国产品牌销量相同”,则有:
,,,,,,,共种情况
,即至少有一个月份这两年国产品牌销量相同的概率为
(Ⅱ)年销售数据平均数为:
方差
年销售数据平均数为:
方差 年的销售量更稳定
【题目】在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:
几何证 明选讲 | 极坐标与 参数方程 | 不等式 选讲 | 合计 | |
男同学 | 12 | 4 | 6 | 22 |
女同学 | 0 | 8 | 12 | 20 |
合计 | 12 | 12 | 18 | 42 |
(1)在统计结果中,如果把几何证明选讲和极坐标与参数方程称为“几何类”,把不等式选讲称为“代数类”,我们可以得到如下2×2列联表.
几何类 | 代数类 | 合计 | |
男同学 | 16 | 6 | 22 |
女同学 | 8 | 12 | 20 |
合计 | 24 | 18 | 42 |
能否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?
(2)在原始统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选答题的同学中随机选出7名同学进行座谈.已知这名学委和2名数学课代表都在选做“不等式选讲”的同学中.
①求在这名学委被选中的条件下,2名数学课代表也被选中的概率;
②记抽取到数学课代表的人数为,求的分布列及数学期望.
下面临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |