题目内容

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系.

(Ⅰ)求直线及圆的极坐标方程;

(Ⅱ)若直线与圆交于两点,求的值.

【答案】(Ⅰ)直线的极坐标方程为.圆的极坐标方程为.(Ⅱ)

【解析】

(Ⅰ)将直线的参数方程转化为普通方程,然后利用公式将直线与圆的方程转化为极坐标即可;

(Ⅱ)利用极坐标方程求出直线与圆交点的极角,根据图形即可求得

解:(Ⅰ)由直线的参数方程

得其普通方程为

∴直线的极坐标方程为

又∵圆的方程为

代入圆的方程,

化简得,

∴圆的极坐标方程为

(Ⅱ)将直线与圆联立方程组,

解得

整理得

不妨记点对应的极角为

对应的极角为,且

于是,

练习册系列答案
相关题目

【题目】前些年有些地方由于受到提高的影响,部分企业只重视经济效益而没有树立环保意识,把大量的污染物排放到空中与地下,严重影响了人们的正常生活,为此政府进行强制整治,对不合格企业进行关闭、整顿,另一方面进行大量的绿化来净化和吸附污染物.通过几年的整治,环境明显得到好转,针对政府这一行为,老百姓大大点赞.

(1)某机构随机访问50名居民,这50名居民对政府的评分(满分100分)如下表:

分数

频数

2

3

11

14

11

9

请在答题卡上作出居民对政府的评分频率分布直方图:

(2)当地环保部门随机抽测了2018年11月的空气质量指数,其数据如下表:

空气质量指数(

0-50

50-100

100-150

150-200

天数

2

18

8

2

用空气质量指数的平均值作为该月空气质量指数级别,求出该月空气质量指数级别为第几级?(同一组数据用该组数据的区间中点值作代表,将频率视为概率)(相关知识参见附表)

(3)空气受到污染,呼吸系统等疾病患者最易感染,根据历史经验,凡遇到空气轻度污染,小李每天会服用有关药品,花费50元,遇到中度污染每天服药的费用达到100元.环境整治前的2015年11月份小李因受到空气污染患呼吸系统等疾病花费了5000元,试估计2018年11月份(参考(2)中表格数据)小李比以前少花了多少钱的医药费?

附:

空气质量指数(

0-50

50-100

100-150

150-200

200-300

空气质量指数级别

空气质量指数

轻度污染

中度污染

重度污染

严重污染

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网