题目内容
【题目】设,数列{bn}满足:bn+1=2bn+2,且an+1﹣an=bn;
(1)求证:数列{bn+2}是等比数列;
(2)求数列{an}的通项公式.
【答案】(1)见解析(2)
【解析】
(1)利用已知求得:,整理bn+1=2bn+2可得:bn+1+2=2(bn+2),问题得证。
(2)利用(1)中结论求得:bn=2n+1﹣2,即:an+1﹣an=bn=2n+1﹣2,将转化为: ,再利用分组求和法求和即可
(1)证明:a1=2,a2=4,且an+1﹣an=bn;∴b1=a2﹣a1=4﹣2=2.
由bn+1=2bn+2,变形为: ,
∴数列{bn+2}是等比数列,首项为4,公比为2.
(2)解:由(1)可得:bn+2=4×2n﹣1,可得bn=2n+1﹣2.
∴an+1﹣an=bn=2n+1﹣2.
∴
2n+2
=2n+1﹣2n.
【题目】已知某海滨浴场海浪的高度y(米)是时间t的(0≤t≤24,单位:小时)函数,记作y=f(t),下表是某日各时的浪高数据:
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b的图象.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动?
【题目】(Ⅰ)如表所示是某市最近5年个人年平均收入表节选.求y关于x的回归直线方程,并估计第6年该市的个人年平均收入(保留三位有效数字).
年份x | 1 | 2 | 3 | 4 | 5 |
收入y(千元) | 21 | 24 | 27 | 29 | 31 |
其中,, 附1:= ,=﹣
(Ⅱ)下表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:
受培时间一年以上 | 受培时间不足一年 | 总计 | |
收入不低于平均值 | 60 | 20 | |
收入低于平均值 | 10 | 20 | |
总计 | 100 |
完成上表,并回答:能否在犯错概率不超过0.05的前提下认为“收入与接受培训时间有关系”.
附2:
P(K2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 0.455 | 0.708 | 2.706 | 3.841 | 6.635 | 7.879 |
附3:
K2=.(n=a+b+c+d)