题目内容
已知
是等差数列,首项
,前
项和为
.令
,
的前
项和
.数列
是公比为
的等比数列,前
项和为
,且
,
.
(1)求数列
、
的通项公式;
(2)证明:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035715878456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035715893425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035715909297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035715924388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035715956939.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035715971431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716002355.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716096558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716112476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716143310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035715909297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716174456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716190432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716205507.png)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035715878456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716236471.png)
(2)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240357162521157.png)
(1)
,
;(2)见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716268518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716299584.png)
试题分析:(1)首先设等差数列的公差为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716314321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716314321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716346422.png)
(2)求得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716346983.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716361884.png)
即证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716377600.png)
很明显
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716392357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716408568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716424435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716455595.png)
试题解析:(1)设等差数列的公差为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716314321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716486623.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240357165021055.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716517815.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240357165481126.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716346422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716580782.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716595641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716611403.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716299584.png)
(2)由(1)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716346983.png)
要证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716658904.png)
只需证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716361884.png)
即证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716377600.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716392357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716408568.png)
下面用数学归纳法证明:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716424435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716455595.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716767414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716798310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716814279.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716829221.png)
(2)假设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716845648.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716860604.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716892468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240357169071296.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716923491.png)
根据(1)(2)可知:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716424435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716455595.png)
综上可知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716377600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035716985505.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240357162521157.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目