题目内容
(本小题满分12分)
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点。
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PD与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由。
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点。
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PD与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由。
(Ⅰ)证明见解析。
(Ⅱ)
(Ⅲ),理由见解析。
(Ⅱ)
(Ⅲ),理由见解析。
解法一:
(Ⅰ)证明:在△PAD中PA=PD,O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD,平面平面ABCD=AD,平面PAD,
所以PO⊥平面ABCD。
(Ⅱ)连结BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC。
由(Ⅰ)知,PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角。
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,
所以OB=,
在Rt△POA中,因为AP=,AO=1,所以OP=1,
在Rt△PBO中,tan∠PBO=。
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为。
设QD=x,则,由(Ⅱ)得CD=OB=,
在Rt△POC中,
所以PC=CD=DP,
由Vp-DQC=VQ-PCD,得2,所以存在点Q满足题意,此时。
解法二:
(Ⅰ)同解法一.
(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),
P(0,0,1),
所以
所以异面直线PB与CD所成的角是arccos,
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为,
由(Ⅱ)知
设平面PCD的法向量为n=(x0,y0,z0).
则所以即,
取x0=1,得平面PCD的一个法向量为n=(1,1,1).
设由,得解y=-或y=(舍去),
此时,所以存在点Q满足题意,此时.
(Ⅰ)证明:在△PAD中PA=PD,O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD,平面平面ABCD=AD,平面PAD,
所以PO⊥平面ABCD。
(Ⅱ)连结BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC。
由(Ⅰ)知,PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角。
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,
所以OB=,
在Rt△POA中,因为AP=,AO=1,所以OP=1,
在Rt△PBO中,tan∠PBO=。
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为。
设QD=x,则,由(Ⅱ)得CD=OB=,
在Rt△POC中,
所以PC=CD=DP,
由Vp-DQC=VQ-PCD,得2,所以存在点Q满足题意,此时。
解法二:
(Ⅰ)同解法一.
(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),
P(0,0,1),
所以
所以异面直线PB与CD所成的角是arccos,
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为,
由(Ⅱ)知
设平面PCD的法向量为n=(x0,y0,z0).
则所以即,
取x0=1,得平面PCD的一个法向量为n=(1,1,1).
设由,得解y=-或y=(舍去),
此时,所以存在点Q满足题意,此时.
练习册系列答案
相关题目