题目内容
已知函数 (为实常数)。(Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数在区间上无极值,求的取值范围;(Ⅲ)已知且,求证: .
(Ⅰ)在时递增;在时递减。(Ⅱ)(Ⅲ)见解析
解析
设函数(Ⅰ) 当时,求函数的极值;(Ⅱ)当时,讨论函数的单调性. (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.
已知函数.(1)若在上是增函数,求实数的取值范围;(2)若是的极值点,求在上的最小值和最大值.
(本题满分13分)为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品. (Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损? (Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.
(本小题满分15分)已知函数(Ⅰ)求的值;(Ⅱ)若曲线过原点的切线与函数的图像有两个交点,试求b的取值范围.
已知函数f(x)=x2+lnx.(1)求函数f(x)的单调区间;(2)求证:当x>1时,x2+lnx<x3.
(12分)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=+6x的图象关于y轴对称.(1)求m、n的值及函数y=f(x)的单调区间;(6分)(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.(6分)
已知函数(1)求在点处的切线方程;(2)若存在,使成立,求的取值范围;(3)当时,恒成立,求的取值范围.
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.(Ⅰ)求,,的值;(Ⅱ)求函数的单调递增区间.(Ⅲ)求函数在上的最大值和最小值