题目内容
已知函数.(1)若在上是增函数,求实数的取值范围;(2)若是的极值点,求在上的最小值和最大值.
(1)。(2)上最大值是,最小值是
解析
(本题满分14分)已知函数(),.(Ⅰ)当时,解关于的不等式:;(Ⅱ)当时,记,过点是否存在函数图象的切线?若存在,有多少条?若不存在,说明理由;(Ⅲ)若是使恒成立的最小值,对任意,试比较与的大小(常数).
(本小题满分13分)已知函数.(1)若为的极值点,求实数的值;(2)若在上为增函数,求实数的取值范围;(3)当时,方程有实根,求实数的最大值.
(本小题满分13分)已知函数.(Ⅰ)求函数的极大值;(Ⅱ)若对满足的任意实数恒成立,求实数的取值范围(这里是自然对数的底数);(Ⅲ)求证:对任意正数、、、,恒有.
(本小题满分14分)设函数。 (1)若在处取得极值,求的值;(2)若在定义域内为增函数,求的取值范围;(3)设,当时,求证:① 在其定义域内恒成立;求证:② 。
(本小题满分12分)已知函数.().(1)当时,求函数的极值;(2)若对,有成立,求实数的取值范围.
已知函数 (为实常数)。(Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数在区间上无极值,求的取值范围;(Ⅲ)已知且,求证: .
(本题15分)已知函数图象的对称中心为,且的极小值为.(1)求的解析式;(2)设,若有三个零点,求实数的取值范围;(3)是否存在实数,当时,使函数在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.
本小题满分12分)设函数在及时取得极值.(Ⅰ)求a、b的值(6分);(Ⅱ)若对于任意的,都有成立,求c的取值范围(6分)