题目内容
4.若a是f(x)=sinx-xcosx在x∈(0,2π)的一个零点,则?x∈(0,2π),下列不等式恒成立的是( )A. | $\frac{sinx}{x}≥\frac{sina}{a}$ | B. | cosa≥$\frac{sinx}{x}$ | C. | $\frac{3π}{2}$≤a≤2π | D. | a-cosa≥x-cosx |
分析 利用导数研究单调性,运用零点的存在性定理判断出a所在的范围,根据f(x)的正负确定g(x)=$\frac{sinx}{x}$的最小值.
解答 解:f′(x)=xsinx,
当x∈(0,π),f′(x)>0,函数f(x)单调递增,
当x∈(π,2π),f′(x)<0,函数f(x)单调递减,
又f(0)=0,f(π)>0,f(2π)<0,
∴a∈(π,2π),
∴当x∈(0,a),f(x)>0,当x∈(a,2π),f(x)<0,
令g(x)=$\frac{sinx}{x}$,g′(x)=$\frac{xcosx-sinx}{{x}^{2}}$,
∴当x∈(0,a),g′(x)<0,函数g(x)单调递减,当x∈(a,2π),g′(x)>0,函数g(x)单调递增,
∴g(x)≥g(a).
故选:A.
点评 本题主要考查零点的存在性定理,利用导数求最值及计算能力.
练习册系列答案
相关题目
3.设函数f(x)=ex(sinx-cosx)(0≤x≤2015π),则函数f(x)的各极小值之和为( )
A. | -$\frac{{e}^{2π}(1-{e}^{2015π})}{1-{e}^{2π}}$ | B. | -$\frac{{e}^{2π}(1-{e}^{2015π)}}{1-{e}^{π}}$ | ||
C. | -$\frac{1-{e}^{2016π}}{1-{e}^{2π}}$ | D. | -$\frac{{e}^{2π}(1-{e}^{2014π})}{1-{e}^{2π}}$ |
9.设函数f(x)满足f(x)=f(4-x)(x∈R),且当x>2时f(x)为增函数,记a=f(1.10.5),b=f(0.51.1),c=f(log0.5$\frac{1}{16}$),则a、b、c的大小关系为( )
A. | c<b<a | B. | c<a<b | C. | b<a,c | D. | a<b<c |
14.若复数z满足(z-3)(2-i)=5(i为虚数单位),则z为( )
A. | 2-i | B. | 2+i | C. | 5-i | D. | 5+i |