题目内容
(本小题满分12分)已知直线
过定点
,且与抛物线
交于
、
两点,抛物线在
、
两点处的切线的相交于点
.
(I)求点
的轨迹方程;
(II)求三角形
面积的最小值.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231413224175839.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321809185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321824438.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321840353.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321949200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321996206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321949200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321996206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322246202.gif)
(I)求点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322246202.gif)
(II)求三角形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322277266.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231413224175839.jpg)
(1)
(2)2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322448398.gif)
(Ⅰ)设
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322698365.gif)
处的切线方程为
整理得
,①
同理
处的切线方程为
② …………………………………2分
联立①②得
…………………………………3分
由题意知直线
的斜率存在,设斜率为
,
则直线
的方程为:
③,
③与
联立得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141323135498.gif)
, …………………………………5分
得
, ………………………………6分
即
所以
的轨迹方程为:
………………………7分
(Ⅱ)
到直线
的距离![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231413233221144.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141323462283.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231413235871070.gif)
……………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322480638.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322651418.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322698365.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321949200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322870541.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322885455.gif)
同理
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321996206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322963459.gif)
联立①②得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322979593.gif)
由题意知直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321809185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141323041199.gif)
则直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321809185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141323088495.gif)
③与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321840353.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141323135498.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231413231501116.gif)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141323166418.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141323182653.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322246202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322448398.gif)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141322246202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141321809185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231413233221144.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141323462283.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231413235871070.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231413236031569.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目