题目内容
【题目】在平面直角坐标系中,已知三个点列{An}、{Bn}、{Cn},其中An(n,an)、Bn(n,bn)、Cn(n﹣1,0),满足向量 与向量 共线,且bn+1﹣bn=6,a1=b1=0,则an=(用n表示)
【答案】3n2﹣9n+6.3n2﹣9n+6(n∈N*)
【解析】解:∵bn+1﹣bn=6,a1=b1=0,
∴bn=0+6(n﹣1)=6n﹣6.
向量 =(1,an+1﹣an),
向量 =(﹣1,﹣bn),
∵向量 与向量 共线,
∴﹣bn+an+1﹣an=0,
∴an+1﹣an=bn=6n﹣6,
∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1
=[6(n﹣1)﹣6]+[6(n﹣2)﹣6]+…+[6×1﹣6]+0
= ﹣6(n﹣1)
=3n2﹣9n+6.3n2﹣9n+6(n∈N*)
【考点精析】关于本题考查的向量的三角形法则,需要了解三角形加法法则的特点:首尾相连;三角形减法法则的特点:共起点,连终点,方向指向被减向量才能得出正确答案.
练习册系列答案
相关题目
【题目】在对人们休闲方式的一次调查中,其中主要休闲方式的选择有看电视和运动,现共调查了100人,已知在这100人中随机抽取1人,抽到主要休闲方式为看电视的人的概率为。
(1)完成下列2×2列联表;
休闲方式为看电视 | 休闲方式为运动 | 合计 | |
女性 | 40 | ||
男性 | 30 | ||
合计 |
(2)请判断是否可以在犯错误的概率不超过0.005的前提下认为性别与休闲方式有关系?
参考公式
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 |
k | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 |