题目内容
13.已知命题P:不等式a2-4a+3<0的解集;命题Q:使(a-2)x2+2(a-2)x-4<0对任意实数x恒成立的实数a,若P∨Q是真命题,求实数a的取值范围.分析 据复合函数单调性的判定方法,我们可以判断出命题p满足时,参数a的取值范围,进而根据二次不等式恒成立的充要条件,我们易判断出命题q满足时,参数a的取值范围,进而根据p∨q是真命题,易得到满足条件的实数a的取值范围.
解答 解:不等式a2-4a+3<0得,1<a<3,
所以命题为; 1<a<3,
由不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立;
得a
a=2 或$\left\{\begin{array}{l}a-2<0\\△=4{(a-2)^2}+16(a-2)<0\end{array}\right.$,
解得-2<a≤2,
∵P∨Q是真命题,
∴a的取值范围是-2<a<3.
点评 本题考查的知识点是命题的真假判断与应用,函数恒成立问题,其中根据已知求出命题p和q满足时,参数a的取值范围,是解答本题的关键.
练习册系列答案
相关题目
3.当双曲线C不是等轴双曲线时,我们把以双曲线C的实轴、虚轴的端点作为顶点的椭圆称为双曲线C的“伴生椭圆”.则离心率为$\sqrt{3}$的双曲线的“伴生椭圆”的离心率为( )
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
4.已知a=0.80.2,b=0.80.5,c=5.20.1,则这三个数的大小关系为( )
A. | b<a<c | B. | a<b<c | C. | c<a<b | D. | c<b<a |
1.如图,从椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x 轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,则椭圆的离心率为( )
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
8.在△ABC中,若C=90°,三边为a,b,c,则$\frac{a+b}{c}$的范围是( )
A. | ($\sqrt{2}$,2) | B. | (1,$\sqrt{2}$] | C. | (0,$\sqrt{2}$] | D. | [$\frac{{\sqrt{2}}}{2}$,$\sqrt{2}$] |
18.函数y=f(x)的图象如图所示,则以下描述正确的是( )
A. | 函数f(x)的定义域为[-4,4) | |
B. | 函数f(x)的值域为[0,5] | |
C. | 此函数在定义域内既不是增函数也不是减函数 | |
D. | 对于任意的y∈[0,+∞),都有唯一的自变量x与之对应 |
5.设全集U=R,已知集合M={x|x2-x>0},N={x|$\frac{x-1}{x}$<0},则有( )
A. | M∪N=R | B. | M∩N=∅ | C. | CuN=M | D. | CvM⊆N |
2.已知cosα=$\frac{3}{5}$,则sin($\frac{π}{2}$-α)=( )
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |