题目内容

5.用数学归纳法证明$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}>\frac{13}{24}$,由n=k到n=k+1左边需添加的项为(  )
A.$\frac{1}{2(k+1)}$B.$\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}$
C.$\frac{1}{2k+1}+\frac{1}{2k+2}+\frac{1}{k+1}$D.$\frac{1}{2k+1}+\frac{1}{2k+2}$

分析 利用数学归纳法的步骤即可得出.

解答 解:n=k到n=k+1左边需添加的项为$\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}$,
故选:B.

点评 本题考查了数学归纳法证明步骤,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网