题目内容
【题目】数列满足, .
(1)证明:数列是等差数列;
(2)设,数列的前项和为,对任意的, , 恒成立,求正数的取值范围.
【答案】(1)证明见解析 (2)
【解析】试题分析:(1)根据等差数列的定义即可证明:数列是等差数列;
(2)利用错位相减法即可求数列{bn}的前n项和,利用作差法可得数列{}单调递增, , 恒成立,只需即可.
试题解析:
解(1)证明:由已知可得=,
即=+1,即-=1.
∴数列是公差为1的等差数列.
(2)由(1)知=+(n-1)×1=n+1,
∴an=.
所以bn=,
Tn=+++…+,
Tn=+++…+.
两式相减得
Tn=+2-,
Tn=+2×-,
Tn=1+4-=3-,
由Tn-Tn-1=3--=,
当n≥2时,Tn-Tn-1>0,所以数列{Tn}单调递增.
最小为,
依题意上恒成立,
设
则
又解得
练习册系列答案
相关题目
【题目】某单位需要从甲、乙人中选拔一人参加新岗位培训,特别组织了个专项的考试,成绩统计如下:
第一项 | 第二项 | 第三项 | 第四项 | 第五项 | |
甲的成绩 | |||||
乙的成绩 |
(1)根据有关统计知识,回答问题:若从甲、乙人中选出人参加新岗培训,你认为选谁合适,请说明理由;
(2)根据有关槪率知识,解答以下问题:
从甲、乙人的成绩中各随机抽取一个,设抽到甲的成绩为,抽到乙的成绩为,用表示满足条件的事件,求事件的概率.