题目内容
(1)设x≥1,y≥1,证明x+y+≤++xy;
(2)1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.
(2)1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.
(1)见解析(2)见解析
(1)由于x≥1,y≥1,
要证x+y+≤++xy,
只需证xy(x+y)+1≤y+x+(xy)2.
因为[y+x+(xy)2]-[xy(x+y)+1]
=[(xy)2-1]-[xy(x+y)-(x+y)]
=(xy+1)(xy-1)-(x+y)(xy-1)
=(xy-1)(xy-x-y+1)
=(xy-1)(x-1)(y-1).
由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,
从而所要证明的不等式成立.
(2)设logab=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.
于是,所要证明的不等式即为x+y+≤++xy.
其中x=logab≥1,y=logbc≥1.
故由(1)可知所要证明的不等式成立.
要证x+y+≤++xy,
只需证xy(x+y)+1≤y+x+(xy)2.
因为[y+x+(xy)2]-[xy(x+y)+1]
=[(xy)2-1]-[xy(x+y)-(x+y)]
=(xy+1)(xy-1)-(x+y)(xy-1)
=(xy-1)(xy-x-y+1)
=(xy-1)(x-1)(y-1).
由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,
从而所要证明的不等式成立.
(2)设logab=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.
于是,所要证明的不等式即为x+y+≤++xy.
其中x=logab≥1,y=logbc≥1.
故由(1)可知所要证明的不等式成立.
练习册系列答案
相关题目