题目内容
【题目】已知的三个顶点落在半径为的球的表面上,三角形有一个角为且其对边长为3,球心到所在的平面的距离恰好等于半径的一半,点为球面上任意一点,则三棱锥的体积的最大值为( )
A. B. C. D.
【答案】C
【解析】
设外接圆的圆心为,则平面,所以,设外接圆的半径为,,利用正弦定理即可求得:,再利用截面圆的性质可列方程:,即可求得,即可求得点到平面的距离的最大值为,利用余弦定理及基本不等式即可求得:,再利用锥体体积公式计算即可得解。
设外接圆的圆心为,则平面,所以
设外接圆的半径为,,
由正弦定理可得:,解得:
由球的截面圆性质可得:,解得:
所以点到平面的距离的最大值为:.
在中,由余弦定理可得:
当且仅当时,等号成立,所以.
所以,当且仅当时,等号成立.
当三棱锥的底面面积最大,高最大时,其体积最大.
所以三棱锥的体积的最大值为
故选:C
【题目】2017年5月,“一带一路”沿线的20国青年评选出了中国“新四大发明”:高铁、支付宝、共享单车和网购.2017年末,“支付宝大行动”用发红包的方法刺激支付宝的使用.某商家统计前5名顾客扫描红包所得金额分别为5.5元,2.1元,3.3元,5.9元,4.7元,商家从这5名顾客中随机抽取3人赠送台历.
(1)求获得台历的三人中至少有一人的红包超过5元的概率;
(2)统计一周内每天使用支付宝付款的人数与商家每天的净利润元,得到7组数据,如表所示,并作出了散点图.
(i)直接根据散点图判断,与 哪一个适合作为每天的净利润的回归方程类型.(的值取整数)
(ii)根据(i)的判断,建立关于的回归方程,并估计使用支付宝付款的人数增加到35时,商家当天的净利润.
参考数据:
22.86 | 194.29 | 268.86 | 3484.29 |
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
【题目】某同学用“五点法”画函数,在某一周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
x | |||||
0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,并求函数的解析式;
(2)求函数的单调递增区间;
(3)求函数在区间上的最大值和最小值.